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Summary. A general parametric scheme of hierarchical clustering procedures 
with invariance under monotone transformations of similarity values and inva-
riance under numeration of objects is described. This scheme consists of two steps: 
correction of given similarity values between objects and transitive closure of 
obtained valued relation. Some theoretical properties of considered scheme are 
studied. Different parametric classes of clustering procedures from this scheme 
based on perceptions like “keep similarity classes,” “break bridges between clusters,” 
etc. are considered. Several examples are used to illustrate the application of 
proposed clustering procedures to analysis of similarity structures of data. 

1 Introduction 

At least two goals can be associated with cluster analysis of the set of 
objects based on information about similarity values between the objects: (1) 
decomposition of the set of objects into classes of similar objects and (2) 
analysis of similarity structure of this set. Unfortunately, many clustering 
algorithms seeking decomposition of given set of objects into given number 
of classes of similar objects do not bring out underlying structure but fit the 
data to some preconceived model [15, 26]. A user of cluster analysis packages 
can be very happy with good clusters obtained for his data by some standard 

of objects. The permutation of numeration of objects at the input of nonin-
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clustering procedure but it is very possible that the obtained structure of clus- 
ters does not reflect intrinsic structure of data but imposed by specifica-
tions of clustering algorithm. One of the reasons of this disadvantage of many
popular clustering procedures is their noninvariance under numeration 

variant clustering procedure often causes the change of results of clustering. 
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It means that the clustering obtained for given numeration of objects does 
not reflect the structure of the set of objects. A simple example of such 
noninvariance of classical algorithms is considered in Sect. 2. The require-
ment of invariance of clustering algorithms under numeration (permutation, 
ordering) of objects is considered in cluster analysis as most important 
requirement [ 1, 6, 8, 21], but, unfortunately, an overwhelming majority of 
popular clustering algorithms do not satisfy this property. This property is 
fulfilled for single linkage (also called nearest neighbor) algorithm discussed 
in many papers [15, 21–23]. This algorithm builds chains of clusters and for 
this reason reflects only a specific point of view on “cluster” which does not 
always acceptable. In this paper we consider parametric scheme of invariant 
clustering procedures which can vary the point of view on “cluster” and 
includes single linkage algorithm as a partial case. 

Another important requirement on clustering algorithms is invariance 
under monotone transformation of similarity values between objects [18, 
21, 22, 24]. This is a necessary requirement on clustering algorithm if 
similarity values are evaluated by experts in ordinal scale. This require-
ment is desirable also for insensitivity of the results of clustering to the 
choice of similarity or dissimilarity measure. 

In this chapter we study a general scheme of hierarchical clustering 
procedures satisfying both invariance requirements considered above. This 
scheme initially proposed by Batyrshin [2–4] is based on the concept of a 
fuzzy equivalence relation introduced and studied in [28, 30]. Clustering 
procedure in this scheme consists in two steps: correction of given 
similarity values between objects and max–min transitive closure of 
obtained valued (fuzzy) relation. When a correction of similarity values 
does not used and only transitive closure of given similarity relation is 
applied then the clustering scheme gives clustering procedure proposed in 
[28] which is similar to single linkage algorithm [16]. Since transitive 
closure is invariant under numeration of objects and under monotone 
transformations of similarity values, the clustering procedure will satisfy 
both types of invariance if correction procedure satisfies them. Several 
schemes of such invariant parametric correction procedures are considered 
in this chapter. 

To build a rational clustering procedure in considered scheme, it is 
necessary to propose suitable correction procedure. The chapter studies the 
properties of similarity relations and correction procedures related with the 
perceptions of “natural” cluster and “rational” clustering. Such relation-
ships are formulated as propositions with main results given in Theorem 2 
and Proposition 5. Theorem 2 gives reasons for construction of general 
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class of correction procedures as transformations decreasing similarity 
values in initially given similarity relation. Proposition 5 says that for 
some class of such transformations the resulting clustering procedure will 
satisfy the property “keep similarity classes.” This result is used further for 
construction of clustering procedures “breaking” similarity classes consi-
dered as “bridges” between clusters. 

Some basic definitions and properties of valued relations are discussed 
in Sect. 3. In Sect. 4 we consider a general scheme of clustering procedures 
and its relation with a solution of a problem of approximation of valued 
similarity relations by valued equivalence relation. Section 5 discusses 
theoretical properties of the first version of this scheme [3] based on 
identity neighborhood functions and on perception “keep similarity 
classes.” Section 6 discusses methods of extraction of valuable clusters 
from parametric dendrograms constructed by clustering scheme. Appli-
cation of clustering procedures with identity neighborhood functions to 
clustering of Windham’s data [13] is considered in Sect. 7. Section 8 
considers clustering scheme with nonidentity neighborhood functions 
which is based on perception “break bridges between clusters.” This 
scheme is illustrated on “butterfly” data. Example of clustering of time 
series from economics is considered in Sect. 9. In Sect. 10 we summarize 
results of the chapter and discuss possible extensions of considered 
clustering schemes.  

2 Invariance and Noninvariance of Clustering Procedures 

Let us consider a very simple example of a set of seven points sym-
metrically located on a circle (Fig. 1a). Initial information for clustering is 
given as a matrix of distances between the objects (see Appendix 1). For 
numeration of objects considered in Fig. 1b the average linkage clustering 
algorithm realized in Matlab 6.5 builds dendrogram shown in Fig. 1d. We 
can extract from this dendrogram a partition, for example, on two clusters. 
On the highest level of dendrogram we will obtain clusters {1,2,7} and 
{3,4,5,6} which corresponds to partition of the set of objects on subsets 
{a,b,g} and {c,d,e,f }. The explorer, if he does not know the geometrical 
structure of data, could be very happy to obtain such clear partition of 
objects on two clusters. But if we change numeration of objects as shown 
in Fig. 1c then due to a symmetry of data the input matrix will not be 
changed and average linkage will give the same dendrogram as in Fig. 1d 
but now partition {1,2,7} and {3,4,5,6} will correspond to partition of 
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Fig. 1. Noninvariance of average linkage algorithm under initial numeration of 
objects: (a) seven objects symmetrically located on a circle; (b–c) two different 
numerations of objects; (d) dendrogram obtained for these numerations and 
resulting clustering of objects: {{a,b},g},{{c,d},{e,f}} and {{b,c},a},{{d,e},{f,g}} 

objects {b,c,a} and {d,e,f,g}. Sequentially rotating a numeration of 
objects we can obtain five new partitions of objects on two clusters. It is 

constructed by single linkage clustering algorithm which is invariant under 
numeration of objects. Most of known clustering algorithms also can 
decompose this set of objects onto 2, 3, 4, 5 or 6 clusters, these decom-
positions can be optimal, if some optimality criteria is used in clustering 
algorithm, but none of these decompositions will reflect similarity struc-
ture of data.  

This simple example shows that explorer should be wary if he wants to 
use clustering algorithms for analysis of similarity structure of data. Most 
of the popular clustering procedures are noninvariant under numeration of 
objects. They can give “good” partition of data on clusters but this partition 
even if it optimizes some optimality criteria can be useless for analyzing a 

clear that none of these partitions separately reflects symmetric structure

B={{a,b,c,d,e,f,g}} correspond to symmetry in data. These partitions are 
of data. Only two trivial partitions A={{a},{b},{c},{d},{e},{f},{g}} and 
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similarity structure of data. The following sections consider parametric 
scheme of clustering procedures which are invariant under numeration of 
objects and showed good results on testing and experimental data. 

3 Basic Definitions 

Denote X a finite set of objects and R a set of non-negative real values. A 
function S: X  X→R satisfying symmetry condition 

S(x,y) = S(y,x)  

will be called a proximity relation. A proximity relation D is called a 
dissimilarity relation if D(x,x) = 0 for all x from X. In this case D(x,y) 
usually denotes dissimilarity or distance value between objects x and y. A 
proximity relation S is called a similarity relation if S satisfies reflexivity 
condition: 
 

S(x,x) = I, 
 

y,z(S(y,z)) for all x,y,z from X. Similarity relation S and 
dissimilarity relation D can be obtained one from another, e.g., as follows: 
D(x,y) = I - S(x,y). Note that in [30] similarity relation denotes reflexive 

tion: 
 

S(x,y) ≥ min{(S(x,z),S(z,y)}. 
 
Such relation will be called here a valued equivalence relation. The 
properties of valued equivalence relations were studied in [28, 30]. The 
property of (∨,∧) – transitivity is dual to the ultrametric inequality: 

 
D(x,y) ≤ max{(D(x,z),D(z,y)}. 

 

ultrametric and vice versa. The properties of ultrametrics were studied in 
many works [1, 19, 20, 22, 17, 29]. 

For any value (level) a from R a valued relation S defines an ordinary 
relation S[a] and valued relation Sa as follows: 

 

If S is a valued equivalence relation then D(x,y) = I - S(x,y) is an 

×

where I = max
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Sa(x,y) = 1, if S(x,y) ≥ a and Sa(x,y) = 0, if S(x,y) < a. 
 
Valued relation Sa may be considered as a characteristic function of 
ordinary relation S[a]. From a < b it follows that S[b] ⊆ S[a] and Sb ⊆ Sa. From 
reflexivity and symmetry of S it follows that for all a∈R the ordinary 
relations S[a] also will be reflexive and symmetric. If S is (∨,∧) – transitive 
then all S[a] will be transitive relations. As result, valued equivalence 
relation defines a nested set of ordinary equivalence relations and hence a 
nested partition of X on equivalence classes. 

The subset A of X will be called a similarity class of similarity relation 
S on X if 

 
S(x,y) > S(x,z) for all x,y ∈A and all z∉A. 

 
A similarity class A may be considered as a natural cluster in the set X. A 
value s = minx,y∈A{S(x,y)} will be called a strength of similarity class A. 

 
Proposition 1. A set of similarity classes of a valued equivalence relation 
S coincides with a set of equivalence classes of relations S[a] , a∈R. 
 
The set S(X) of all similarity relations defined on X is a partially ordered 
set with ordering relation ⊆ given as follows: 

 
S ⊆ T   iff   S(x,y) ≤ T(x,y) for all x,y from X. 

 
We will write S ⊂ T if and only if S ⊆ T and S ≠ T. S(X) is a distributive 
lattice [14] with operations ∩ and ∪ defined on S(X) as follows: 

 
(S∩T)(x,y) = min(S(x,y), T(x,y)), 
(S∪T)(x,y) = max(S(x,y), T(x,y)). 

 

(∨,∧)-composition S° T of valued relations S and T on X is defined as 
follows: 

 

S[a] = {(x,y)∈X⎪S(x,y) ≥ a}; 

Note that the intersection of valued equivalence relations will give valued 
equivalence relation but for union operation the similar property generally
does not hold. 
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(∨,∧) – transitivity of S can be written as S ⊇ S° S. (∨,∧)-transitive 

closure Ŝ  of S is defined as follows: Ŝ  = S k

k=

∞

1
∪ , where Sk = Sk-1

° S, for all  

k > 1, and S 

1 = S. From reflexivity of S and from ⎪X⎪=n it follows S ⊆ S 

2⊆ 

S 

3⊆ …⊆ S 

n-1 = S 

n= … and hence Ŝ = S 

n-1. A transitive closure Ŝ  of S will be 
denoted also as TC(S). 

For transitive closure of similarity relation S the following properties 
are fulfilled: 

(1) Ŝ  is a valued equivalence relation, i.e., Ŝ  is transitive; 

(2) S is transitive if and only if S = Ŝ ; 

(3) if S ⊆ T then Ŝ  ⊆ T̂ ; 

(4) S ⊆ Ŝ and Ŝ is a least transitive-valued relation containing S, i.e., 

if S ⊆ T and T is transitive then Ŝ ⊆ T. 

4 General Scheme of Hierarchical Clustering Procedures 

A hierarchical clustering procedure can be considered as a transformation 
of a given similarity relation S into a valued equivalence relation E which 
defines a nested partition of X on equivalence classes. In terms of ultra-
metric a clustering procedure can be considered as a transformation of a 
dissimilarity relation into an ultrametric [17, 20, 22 ]. In terms of valued 
equivalence relations, there exists a natural relationship between the 
concepts of equivalence relation, partition and clustering. This approach 
was used in [28], where the transitive closure of the given similarity rela-
tion was used as such a transformation. The method proposed in [28] is 
equivalent to the single linkage clustering algorithm [16]. We will use here 
a more general approach, where transitive closure is applied to a corrected 
similarity relation. We will consider the following general scheme of 
clustering procedures [3, 4]: 

 
E = Q(S) = TC(F(S))= 

∧
)(SF ,  (1) 

 

(S°T)(x,y) = ∨z∈X (S(x,z)∧ T(z,y)). 
 

a procedure of transitive closure of valued similarity relations. The 
where F is some “correction” of given similarity relation S and TC is  
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clustering method [16] or by special algorithms [25, 27]. This procedure 
possesses both types of invariance discussed above. When a correction proce-
dure F also exhibits both types of invariance, then the clustering procedure 
Q will also satisfy both invariance properties. A clustering procedure 
consisting of these two procedures F and TC will be called a relational 
clustering procedure. 

In [3, 4] it was required also that a reasonable correction procedure F 
should satisfy the following constraint: 

F(S) ⊆ S, (2) 
 

where ⊆ is a partial ordering of valued relations. This constraint follows 
from the following formal considerations. 

It is desirable to use a correction procedure F such that the distance 
between the initial similarity relation S and a final equivalence relation E 
will be small. The small transformation of initial similarity relation pro-
duced by clustering algorithm gives reasons to suppose that clusters cor-
responding to final valued equivalence relation reflect intrinsic structure  
of data. Of course, for some reasonable clustering algorithm that extracts 
clusters with specific form this distance may be sufficiently large. Never-
theless, the small distance between initial and final valued relations may be 
considered as a desirable property for any clustering algorithm. Formally 
this requirement can be formulated as follows: 

 
Find E*∈ E(X): d(S,E*) = min

E∈E(X) d(S,E), (3) 
 

where S is a given similarity relation on X, E(X) is a set of all possible 
valued equivalence relations defined on X and d is some distance measure 
defined on the set S(X) of all similarity relations on X. The problem (3) is 
studied in more general form in [3, 5] as a problem of approximation in a 
partially ordered set with closure operation. 

A function d: S(X) × S(X)→R is called a positive distance function on 
S(X) if it satisfies on S(X) the following properties: 

 
A1.   d(S,S) = 0. 
A2.   d(S,T) = d(S∩T,S∪T). 
A3a. If P ⊆ S ⊂ T  then d(P,S) < d(P,T), 
A3b. If P ⊂ S ⊆ T then d(S,T) < d(P,T). 

procedure of transitive closure is studied in the theory of fuzzy relations, in 
graph theory and in cluster analysis and may be realized by single linkage 
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d(S,T) = d(T,S), and 
d(S,T) > 0 if and only if S ≠ T. 
 

satisfies the properties A1, A2 and the property 
 
A3*. If P ⊆ S ⊆ T   then   max(d(P,S),d(S,T)) ≤ d(P,T). 
 

∪ T) - v(S∩T), where  v  is a positive 
valuation on S(X) [14], i.e., v is a real-valued function v:S(X)→R 
satisfying the properties: 

 
v(S∪T)+ v(S∩T) = v(S) + v(T), 
if S ⊂ T then v(S) < v(T). 

 

x y 

x y 

function on S(X). Most of the known metrics are positive distance func-
tions but the metric d(S,T)=maxx,y⎪S(x,y)-T(x,y)⎪ will be only isotonic one. 
 
Theorem 2. If d is a positive distance function on S(X) then the solution of 
(3) has representation 

 
E* =TC(Sc), (4) 
 

where Sc is some element of S(X) such that 
 

Sc ⊆ S. (5)  
 

Theorem 2 gives reasons for the constraint (2) on the correction procedure 
F in general scheme of clustering procedures (1). 

Several parametric correction procedures F satisfying condition (2) 
were proposed in [3, 4, 7] such that the resulting clustering procedures 
showed good results on many real and testing data [4, 7, 9]. 

From F(S) ⊆ S it follows that correction procedure should decrease 
some similarity values S(x,y). To be invariant under numeration of objects 
a correction procedure should be applied to all pairs of objects (x,y) 
simultaneously and independently on their numeration. To be invariant 

It is easy to see that d satisfies also the properties: 

∑ ∑ |S(x,y) - T(x,y)| defined by this valuation will be a positive distance 

A function d will be called an isotonic distance function on S(X) if it 

As an example of a positive distance function on S(X) we can use  any
metric d defined as: d(S,T) = v(S

For example, the function v(S) = ∑ ∑ S(x,y) will be a positive valua- 
tion on the set of all similarity relations and hence the metric d(S,T)= 
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under monotone transformations of similarity values a correction proce-
dure should take into account only mutual linear ordering of similarity 
values S(x,y). Of course, when the last condition of invariance does not 
required from clustering algorithm then correction procedure can use some 
quantitative measures depending on similarity values S(x,y). 

Below is a description of parameterized correction procedure given in 
more general form in [11] than it was proposed initially in [3]. 

Suppose f1, f2, f3: R→R are monotone functions. A correction procedure 
depends on the following sets and functions: 

Vy(x) = {z∈X \{x,y}⎪ S(x,z) ≥ f1(S(x,y))}, 
Vx(y) = {z∈X \{x,y}⎪ S(y,z) ≥ f1(S(x,y))}. 

 
The sets Vy(x) and Vx(y) denote the sets of objects “similar” to x and to y, 
respectively, when the value f1(S(x,y)) serves as a criterion of this 
similarity. The set 

 
V(x,y) = {z∈X \{x,y}⎪ max{S(x,z),S(y,z)} ≥ f2(S(x,y))}, 

 
contains the objects from X which are “similar” at least to one of the 
objects x and y. When f1 ≡ f2 we have V(x,y)=Vy(x)∪Vx(y). This set will be 
considered as the set of “neighbors” of x and y. The objects in V(x,y) will 
be taken into account when decision about correction of the value S(x,y) 
will be made. The set 

 
W(x,y) = {z∈V(x,y)⎪ min{S(x,z),S(y,z)} ≥ f3(S(x,y))}, 
 

denotes the set of “strong” or “common” neighbors, i.e., objects which are 
“similar” to both objects x and y. The objects from W(x,y) will “support” 
the value S(x,y). When f1 ≡ f3 we have W(x,y)= Vy(x)∩Vx(y). The functions 
f1, f2, f3 used in clustering procedure will be called neighborhood functions. 

The decision about correction of the value S(x,y) will depend on the 
relative part of objects “supporting” the similarity value S(x,y). One can 
consider the following methods to calculate for each pair of objects x and y 
this relative part denoted as hi: 

 

))(,)(min(

),(
1

yVxV

yxW
h

xy
= , 

))(,)(max(

),(
2

yVxV

yxW
h

xy
=  , 
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yxW
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4 −
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where, by definition, hi = 1 if denominator of hi is equal to 0. 
The correction procedure F(S) in the clustering procedure Q may be 

defined as follows: 
 

⎪⎩

⎪
⎨
⎧ ≥

=
otherwiseyxF

phifyxS
yxSF

j

i
),(

),(
)),(( , 

 
where p∈[0,1], j are parameters and Fj(x,y) is a corrected value such that 
Fj(x,y) ≤ S(x,y). We will suppose that Fj(x,y) depends on the values S(x,z), 
S(y,z) for all objects z belonging to the sets of neighbors Vy(x), Vx(y) and 
V(x,y). We require also that Fj(x,y) ≥ minz∈V {S(x,z),S(y,z)}, where V = 
Vy(x)∪Vx(y)∪V(x,y). The specific definition of Fj(x,y) will be discussed 
later. When p = 0, from hj ≥ 0 it follows that F(S(x,y)) = S(x,y), i.e., for all 
x,y from X the values S(x,y) will be uncorrected, and Q(S) = TC(F(S))= 
TC(S), i.e., clustering procedure will coincide with single linkage method 
and method considered in [16, 28]. 

Instead of relative part of supporting neighbors hi it is possible to 
consider the number of supporting neighbors which can be calculated as 
follows: g1= |W(x,y)| or g2= |W(x,y)|+|X \V | -2. In this case the correction 
procedure can be defined as follows: 

 

⎪⎩

⎪
⎨
⎧ ≥

=
otherwiseyxF

tgifyxS
yxSF

j

i
),(

),(
)),(( , 

 
with parameter  t∈{0,1,…, n-2}, n = |X |. 

To be invariant under numeration of objects a correction procedure 
should contain the same parameters for all pairs of objects or these 
parameters should be independent from the numeration of the objects. 

5 Clustering Procedures with Identity Neighborhood 
Functions 

Clustering procedures with identity functions f1–f3 were considered in the 
first clustering scheme [3, 4], where the relative part h3 and correction 
procedure F1(x,y) = minz∈V

can be considered some aggregation of values S(x,z), S(y,z), (z∈V), that 
less than S(x,y). As such aggregation function it can be used correction 

min{S(x,z),S(y,z)} were considered. Generally it 
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procedure Fj(x,y) equal to the mean or max [7]. These procedures were 
introduced heuristically and yielded good results on different experimental 
and testing data [4, 7, 9]. The ordinal versions of correction procedures Fj 
were considered in [11]. 

The correction procedure formalizes the following idea. We can say 
that two objects x and y will be considered as identical in S  

 
if S(x,y) = I and S(x,z) = S(y,z) for all objects z from X \{x,y}.  

 
More generally, two objects x and y will be called indistinguishable on the 
level a∈R 
 

if S(x,y )≥ a and for any z∈X it is fulfilled S(x,z) ≥ a  if S(y,z) ≥ a. 
 
It is clear that two objects indistinguishable on some level a will be 
identical in similarity relation Sa. It is clear also that all objects are 
indistinguishable on the minimal possible level 0. Two objects x and y will 
be called indistinguishable in S if they are indistinguishable on the level 

 
Proposition 3. A similarity relation S defined on X is a valued equivalence 
relation if and only if all objects of X are indistinguishable in S. 
 
From the properties of transitive closure procedure it follows that TC 
transforms any similarity relation S into valued equivalence relation E such 
that S ⊆ E and E is the minimal valued equivalence relation including S. 
Hence transitive closure procedure produces minimal increase of values 
S(x,y) when transforms S into valued equivalence relation E. From Pro-
position 3 we can conclude that this procedure transforms nonindis-
tinguishable pairs of objects into indistinguishable. Hence we can suppose 
that the total value of transformation of S into E produced by TC depends 
on the number of nonindistinguishable pairs of elements in S and on  
the “degree of indistinguishability” of these elements, if we can measure  
it. Hence, the correction procedure F decreasing similarity values S(x,y) 
should produce such minimal corrections of these values which will 
increase the number of indistinguishable pairs of objects or increase the 
“degree of indistinguishability” of pairs of objects. In this case the trans-
formation TC(F(S)) produced by transitive closure will be small. 

For construction of suitable correction procedure it is desirable to 
decide: for what pairs of objects (x,y) the similarity values S(x,y) should be 

a = S(x,y). 
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corrected and how these values should be decreased. For these purposes 
the following evaluation of indistinguishability may be used. We will say 
that two objects x and y are indistinguishable with respect to object z 

 
if from S(x,z) ≥ S(x,y) it follows S(y,z) ≥ S(x,y). 

 
In this case we will say that object z “supports” similarity value S(x,y). The 
more the objects in X support similarity value S(x,y), the more the degree 
of indistinguishability of x and y will be. Our goal is to change the value of 
S(x,y) such that the number of objects supporting similarity between x and 
y and hence the degree of indistinguishability of these objects will increase. 
We can say, that if the objects x and y are indistinguishable only with 
respect to small part of objects and hence they show different behavior on 
large part of objects then the similarity value S(x,y) does not confirmed or 
supported by objects of the set X and, as result, the similarity value S(x,y) 
can be corrected (decreased). 

This idea of correcting procedure illustrated by Fig. 2 where the nodes 
of graph denote the objects of a set X and the presence of an edge between 
two nodes denotes that these objects are “similar” with degree I. Reflexive 
edges in nodes are omitted. For simplicity we consider ordinary relation 
when all weights of edges equal to 0 or I. 

We have V
u(y) = {x,z}, Vy(u) = {v,w}, W(y,u)= ∅, i.e., the similarity 

between objects y and u does not supported by neighboring objects hence 
the respective edge can be deleted. The graph of valued equivalence 
relation nearest to S can be obtained by deleting the edge (y,u) and then by 
transitive closure of resulting graph, i.e., by adding the edge (u,t). The 
resulting equivalence relation presented by graph in Fig. 2b will contain 
two equivalence classes {x,y,z} and {u,v,w,t}. Since the correction pro-
cedure considered in Sect. 4 depends on parameter p (or t), for some values 
of this parameter the correction procedure can delete in initial similarity 
relation also edges (u,v) and (u,w) (Fig. 2c) or even delete all edges except 
the edges (x,z) and (y,w) between identical objects (Fig. 2d). If correction 
will be not applied then all objects will be joined in one cluster. Analysis 
of all possible similarity structures generated by clustering procedure for 
different parameter values will give the following nontrivial clusters: 
{x,y,z}, {u,v,w,t}, {v,w,t}, {v,w}, {x,z}. All of these clusters describe 
similarity structures existing in data but different arguments in favor of 
these clusters can be used. 

Objects x, z and v, w are identical in relation presented in Fig. 2 by graph. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 2. (a) Graph of initial similarity relation S; (b–d) Graphs of possible 
equivalence relations E obtained by clustering procedure from S. A selection of 
edges for correction depends on the value of parameter p and hence on require-
ment on “similarity” of objects joined in one cluster 

For valued relations and graphs the situation is more complicated 
because the correction procedure instead of deleting edges will decrease 
the weights of edges. Some methods of analysis of similarity structures 
generated by parametric scheme are discussed in Sect. 6. 

One of the desirable properties of a clustering procedure is “to keep 
equivalence relations” and “to keep similarity classes.” If such clusters 
exist in the initially given similarity relation S then these clusters should 
also exist in the clustering obtained by the clustering procedure. It can be 
proved that a clustering procedure Q with identity neighborhood functions 
f1–f3  “keeps equivalence relations” and “keeps similarity classes.” 

 
Proposition 4. For clustering procedures Q with identity functions f1–f3  
it is fulfilled Q(S) = S if and only if S is a valued equivalence function. 

 
Proposition 5. Clustering procedures from proposed scheme “keeps simi-
larity classes” if the neighborhood functions f1 and f2 used in this proce-
dures are identity functions. 

 
Let LV(x,y) denote the list of all values S(x,z), S(y,z), (z∈V), which are less 
than S(x,y), ordered in descending order. Denote the number of elements in 
LV(x,y) as m = |LV(x,y)| and the elements of LV(x,y) as lk  (k=1, m). If m > 1 
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then lk ≥ lk+1 for all k=1, m-1. Consider the ordinal generalizations of 
correction procedures Fj(x,y) proposed in [11]. When m > 1, possible 
corrections will be defined by parameter j: 

 
j=1: Fj(x,y) = lm , i.e., lm is the minimal value of LV (x,y); 
j=2: Fj(x,y) = l1, i.e., l1 is the maximal value of LV (x,y); 
j=3: Fj(x,y) = (∑ lk)/m, i.e., Fj(x,y) is the mean of all values from LV (x,y); 
j=4: Fj(x,y) = lk, where k∈{1, …, m} – parameter, F2 is a special case of 

F4; 
j=5: Fj(x,y) = median(LV (x,y)). 
 
All correction procedures Fj(x,y) for j=1,…,5 are invariant under 

numeration of objects and correction procedures Fj(x,y) for j=1,2,4,5 are 
invariant under monotone transformations of similarity values. 

6 Selection of Valuable Clusters 

Considered clustering scheme for given values of parameters defines some 
hierarchical clustering procedure. Generally a hierarchy constructed by 
clustering procedure is considered as a sought similarity structure of data. 
If the goal of analysis is a search of a partition of data then in more 
traditional approach it is selected some level of hierarchy and clusters on 
this level define a partition of data. In naive approaches the number of 
clusters in partition a priori is fixed and the level of dendrogram is selected 
so that the corresponding partition contains desired number of clusters. 
The level-based approach to selection of clusters has a following weak-
ness. Frequently, natural clusters existing in data are generated on different 
levels of hierarchy. For this reason on high levels of hierarchy the small 
natural clusters can disappear as result of union in large conglomerates. 
Correspondingly on small levels the large natural clusters can be separated 
on small non-natural fragments. 

Another approaches extract from hierarchy “valuable” clusters, e.g., 
clusters existing on large number of levels or clusters constructed on high 
level of similarity (on small level of dissimilarity). 

We use “structural” approach to selection of valuable clusters from 
hierarchy proposed in [4]. Suppose on some level of hierarchy two clusters 
A and B are joined together in cluster C = A∪B. Then the importance m of 
these clusters is calculated as follows: 
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m(A) = m(B) = min(NA,NB),  
 
where NA  and NB are the numbers of objects in clusters A and B, 
respectively. We say that a cluster A is a “valuable” cluster if m(A) ≥ M, 
where M is a given number greater than 1. The level M can be selected 
adaptively depending on the number of valuable clusters extracted for 
different values M. The reasons to consider such measure of importance of 
clusters are the following. Suppose NB < M. It means that the set A is joined 
with “nonvaluable” amount of objects and hence A is still “in the process 
of formation of cluster.” For this reason the cluster A, even if he has a large 

A B

then we say that both A and B are “valuable” clusters. If more than two 
clusters are joined on some level then the importance value of all such 
clusters is determined by two of them which have maximal number of 
objects. 

As usual, real data does not contain clear clusters. As in a desert, 
where sand-dunes have different forms and mutual locations and some 
small dunes can be considered as parts of large dunes or as separate dunes 
depending on the “definition” of the concept “dune,” in considered para-
metric clustering scheme a change of parameters of clustering procedure 
will change a concept of “similarity” or “indistinguishability” and, hence, 
will cause the construction of slightly different hierarchical similarity 
structures. Analysis of hierarchical structures obtained by clustering proce-
dure for different values of parameters can be used for extraction of all 
possible valuable clusters in data or for selection “stable” clusters pre-
sented in most of hierarchies. For example presented in Fig. 2 we can say 
that similarity structure of data contains clusters {x,y,z}, {u,v,w,t},  {v,w,t}, 
{x,z} and {v,w}. 

Another approach to selection of “best clustering” of data uses 
distance measure between similarity relations. Change of parameters in 
clustering procedure can be used for selection of hierarchical structure 
corresponding to valued equivalence relation E on the output of clustering 
procedure with minimal distance from initial similarity relation S. For 
example presented in Fig. 2 such minimal distance has partition in Fig. 2b. 
Note that for crisp equivalence relations hierarchy of partitions is reduced 
to one partition. 

amount of objects, receives a small importance value. But if N , N  ≥ M, 
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7 Example of Windham’s Data 

Clustering procedures with identity neighborhood functions f1–f3 will be 
illustrated here on Windham’s data [13] shown in Fig. 3. Dissimilarity 
values (squares of distances) for these data are given in Appendix 2. A 
single linkage method will give a trivial clustering of these objects, i.e., all 
objects will be joined in one cluster or there will be 11 clusters containing 
one object. It is clear that similarity classes are absent in the given data but 
two clusters {1,2,3,4,5} and {7,8,9,10,11} can be considered as “natural.” 
These clusters are constructed by relational clustering procedures based on 

j 3 

lowing nontrivial clusters and partitions: {1,2,4}, {8,10,11}, {5,6,7}; 
{{{{1,2,4}, 3},5}, {{{8,10,11},9},7}}; {{1,2,3,4},{5,6,7}, {8,9,10,11}}. 
Invariance under numeration of objects of the constructed clusters can be 
easily seen from symmetry of data. These clusters describe the symmetric 
structure of the considered set of objects. Note that most of known clustering 
algorithms cannot extract such symmetric structure of data. 
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Fig. 3. Windham’s data [13] 

of parameter p∈{0.1,0.2,…,1}, and for parameter j =3 for almost all values
of parameter p on higher levels of dendrogram. 

In addition to “natural clusters,” relational clustering procedures with 
parameter values j = 1, 3, 4 (k > 2) construct dendrograms with the fol-

197 

procedures F  with parameters h  and j = 2, j = 4 (k = 2), j = 5 for all values 



I. Batyrshin and T. Rudas 

The distance d(D,U) between the initial dissimilarity function D corres-
ponding to Windham’s data and the ultrametrics U corresponding to dendro-
grams constructed by clustering algorithms was minimal for the ultrametric 
U corresponding to clustering into “natural clusters.” As distances d we 
have used distances ds(S,T) = (∑x∑y|S(x,y)-T(x,y)|s)1/s

8 Clustering Procedures with Nonidentity Neighborhood 
Functions 

Nonidentity neighborhood functions f1–f3 in the considered scheme of 
clustering procedures may be used for the construction of clusters based on 
a perception “break bridges between clusters.” This approach, from a 
certain point of view, is opposite to the approach “keep similarity classes” 
because some similarity clusters considered as “bridges” between natural 
clusters can be break down. Figure 4 shows an example of “butterfly” data, 
which may be considered as junction of two clusters forming the “wings” 
of a butterfly. Two central points, forming “similarity class,” should belong 
to different clusters corresponding to the “wings.” Clustering procedure 

 
Fig. 4. “Butterfly” data with 18 points 

, with s = 1 and s = 2. 
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Relational clustering procedures with nonidentity neighborhood func-
tions give possibility to classifying the “butterfly” data into two clusters. 
Euclidean distances between objects were considered as ordinal dissimi-
larity values and a clustering procedure with ordinal nonidentity functions 
f2 and f3 were used. These functions were defined by f2(D(x,y))=lr, 
f3(D(x,y))=lq, where lr and lq are the “rth” and “qth” dissimilarity values 
chosen from the ordered list of dissimilarity values D(y,z), D(x,z) that are 
greater than D(x,y,) where z∈X\{x,y} for f2 and  z∈V(x,y) for f3. Similarity 

u,vD(u,v)-
D(x,y). The clustering into two wings on the higher levels of the 
dendrograms was obtained, for example, for the following values of 

3

(1) (r = 1, q = 1,2), (r = 2, q = 1,2), (r = 3, q = 1,...,4), p = 0.1,...,0.5 or 
p = 0.1,...,0.7; 

(2) (r = 3, q = 5,6), p = 0.1,…,1. 

As one can see for case (2) two wings were constructed for all values 
of parameter p (chosen with step 0.1), greater than 0. 

9 Example of Clustering of Time Series 

Consider application of relational clustering procedures to clustering time 
series of economic data. We use data from [31] which contain time series 
of World Per Capita Gross Domestic Product using Market Exchange 
Rates, 1980-2002. Time series used in example are presented in Fig. 5. 

As dissimilarity measure between time series we used measure of local 

max(AF
K

clustering procedure are given in Appendix 4. We scanned similarity struc-
tures of these data by parametric clustering procedures with values of 
parameters: f1, f2, f3 = 1, 1.5; j = 1,2,3; p = 0, 0.1,…,1. The minimal 
distance between initial similarity relation and final valued equivalence 
relation was obtained for the following values of parameters: f1, f2, f3 = 1.5; 
j = 1; p = 1. The respective dendrogram is shown in Fig. 6. 

should be able “to break” this “bridge” between clusters. Note that the dis-
tances between points increase when moving off origin of coordinates 
along x-axis. Coordinates of points are given in Appendix 3. 

parameters ( j = 1 and h  were used): 

values can be obtained from dissimilarity values by S(x,y) = max

trend associations [12] calculated as d(y,x) = 0.5(1-AM(y,x)), where AM(y,x) = 
(y,x)), K = {2,3}. The values of this dissimilarity measuree used in 

199 



I. Batyrshin and T. Rudas 

1.Mexico

2.USA

3.Cuba

5.Brazil

7.Bulgaria

8.Poland

9.Iraq

10.UAE

12.SA

14.China

15.India

16.Japan

 
Fig. 5. Time series of world per capita gross domestic product using market 
exchange rates, 1980–2002 
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13.Australia

4.Argentina
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Fig. 6. Clustering of time series for parameters: f1, f2, f3 = 1.5; j = 1; p = 1 

11.Madagascar
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 Fig. 7. Clustering of time series for parameters: f1, f2, f3 = 1; j = 2; p = 0.2,…,1 

If we consider clusters containing at least two objects (see Sect. 6) as 
“valuable” then we will obtain the following valuable clusters: C1= 
{13.Australia, 14.China, 2.USA, 16.Japan, 15.India, 5.Brazil, 1.Mexico}, 
C2= {3.Cuba, 11.Madagascar}, C3= {7.Bulgaria, 8.Poland}, C4= 
{6.Venezuela, 4.Argentina}, C5= C1∪C2, C6= X\C4. Analysis of similarity 
structures generated for other values of parameters gives also, for example, 
the following valuable clusters: {13.Australia, 14.China, 2.USA, 

Arab Emirates}, {5.Brazil, 8.Poland}. Figure 7 gives another example of 
hierarchical clustering of data obtained by clustering procedures for 
parameter values f1, f2, f3 = 1; j = 2; p = 0.2,…,1. 

10 Conclusion 

In this chapter we studied a general scheme of clustering procedures based 
on correction and transitive closure of the given similarity relation. The 
main properties of these procedures are invariance under numeration
of objects and invariance under monotone transformations of similarity 
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values. Another important property of general clustering scheme is its 
parametric definition. Different choice of these parameters gives possibi-
lity to change a meaning of “indistinguishability” of objects and to analyze 
possible similarity structures of data, in an exploratory manner. Such 
analysis gives possibility to analyze similarity structures of data from 
different points of view. Several of the considered parametric clustering 
procedures are based on perceptions “keep similarity classes” and “break 
bridges between clusters.” Several propositions and testing examples 
illustrate the properties of the clustering scheme. The proposed scheme can 
be extended in several directions, for example a new type of correction 
procedure can be proposed. In [10] it was considered such extension of 
clustering scheme based on perception “break bridges between clusters.” 
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Appendix 1 

Table 1. Distances between seven points symmetrically located on a circle (Fig. 1) 

 a b c d e f g 
a 0 0.8678 1.5637 1.9499 1.9499 1.5637 0.8678 
b 0.8678 0 0.8678 1.5637 1.9499 1.9499 1.5637 
c 1.5637 0.8678 0 0.8678 1.5637 1.9499 1.9499 
d 1.9499 1.5637 0.8678 0 0.8678 1.5637 1.9499 
e 1.9499 1.9499 1.5637 0.8678 0 0.8678 1.5637 
f 1.5637 1.9499 1.9499 1.5637 0.8678 0 0.8678 
g 0.8678 1.5637 1.9499 1.9499 1.5637 0.8678 0 

Appendix 2 

Table 2. Dissimilarity values for Windham’s data (Fig. 3) 

n/n 1 2 3 4 5 6 7 8 9 10 11 
1     0   6   3   6 11 25 44 72 69 72 100 
2     6   0   3 11   6 14 28 56 47 44   72 
3     3   3   0   3   3 11 25 47 44 47   69 
4     6 11   3   0   6 14 28 44 47 56   72 
5   11   6   3   6   0   3 11 28 25 28   44 
6   25 14 11 14   3   0   3 14 11 14   25 
7   44 28 25 28 11   3   0   6   3   6   11 
8   72 56 47 44 28 14   6   0   3 11     6 
9   69 47 44 47 25 11   3   3   0   3     3 

10   72 44 47 56 28 14   6 11   3   0     6 
11 100 72 69 72 44 25 11   6   3   6     0 

Appendix 3 

Table 3. Coordinates of “Butterfly” data (Fig. 4) 

x 10 10 10 10 10 5 5 5 1 
y    4    2  0   2  4   2   0 2   0 
x    1 5  5   5 10 10 10 10 10 
y    0 2  0 2   4   2   0 2 4 
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